
On a correspondence between SUqp2q, rEqp2q and �SU qp1, 1q

Kenny De Commer�

Dipartimento di Matematica, Università degli Studi di Roma Tor Vergata
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Abstract

In a previous paper, we showed how one can obtain from the action of a locally compact quantum
group on a type I-factor a possibly new locally compact quantum group. In another paper, we applied
this construction method to the action of quantum SUp2q on the standard Podleś sphere to obtain
Woronowicz’s quantum rEp2q. In this paper, we will apply this technique to the action of quantum
SUp2q on the quantum projective plane (whose associated von Neumann algebra is indeed a type
I-factor). The locally compact quantum group which then comes out at the other side turns out to
be the extended SUp1, 1q quantum group, as constructed by Koelink and Kustermans. We also show
that there exists a (non-trivial) quantum groupoid which has at its corners (the duals of) the three
quantum groups mentioned above.
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Introduction

This is part of a series of papers ([3],[2]) devoted to an intriguing correspondence between the quan-

tizations of SUp2q, rEp2q and �SUp1, 1q, with the latter two groups being respectively the non-trivial
two-folded covering Ep2q�Z2 of the Euclidian transformation group of the plane, and the normalizer
of SUp1, 1q inside SLp2,Cq (which contains SUp1, 1q as an index 2 normal subgroup). In a sense,
their duals form a trinity of ‘Morita equivalent locally compact quantum groups’. There then exists
a ‘linking quantum groupoid’ combining these three quantum groups into one global structure, and
it is important to understand for example the (co)representation theory of this object.

In this paper, we will treat the ‘groupoid von Neumann algebra of the linking quantum groupoid be-
tween the duals of SUqp2q, rEqp2q and�SU qp1, 1q’. This object consists of three ‘corners’, corresponding
to linking quantum groupoids of the pairs inside. The linking quantum groupoid between the pair
consisting of the duals of SUqp2q and rEqp2q was treated in [2]. However, we will give here an alterna-
tive description which is more in line with how a second linking quantum groupoid will be presented,
namely the one between the duals of SUqp2q and�SU qp1, 1q. It is this linking quantum groupoid which

�Supported in part by the ERC Advanced Grant 227458 OACFT “Operator Algebras and Conformal Field Theory”

1



will be the main object of study in the present article. The third linking quantum groupoid between
the duals of rEqp2q and �SU qp1, 1q can then easily be obtained by a composition procedure, while the
global ‘3�3 linking quantum groupoid’ is simply the three separate linking quantum groupoids pasted
together.

Let us now describe these objects and constructions in more detail, beginning with providing some
more information on the quantum groups we mentioned. We note that all q’s which appear in this
article are real numbers satisfying 0   q   1, and that we denote by N0 the set of natural numbers
with 0 excluded.

The quantum groups SUqp2q, rEqp2q and �SU qp1, 1q

Of the above quantum groups, SUqp2q is the most well-known one, and the easiest to handle. It is
an example of a compact quantum group in the sense of Woronowicz ([20],[24]), and was introduced
by him in [19] as a ‘twisted’ or q-version of the ordinary SUp2q-group. It appears in different guises,
depending on what type of functions one considers on this quantum group: polynomial, continuous
or measurable. All of these viewpoints can be shown to correspond to the same ‘virtual object’ that
is SUqp2q, and the passage-way between them is easy to describe. In this paper, we will only need
the von Neumann algebraic picture, so we will state the definition in this context, even though this
is certainly not the most suitable way to present it. We first introduce some terminology.

Definition 0.1. A von Neumann bialgebra pM,∆M q consists of a von Neumann algebra M and a
faithful normal unital �-homomorphism ∆M : M ÑMb̄M satisfying the coassociativity condition

p∆M b ιq∆M � pιb∆M q∆M .

The following is a definition of SUqp2q on the von Neumann algebra level.

Definition 0.2. Denote I� � N, and denote by H� the Hilbert space l2pI�q b l2pZq. Consider on it
the operators

a� �
¸
kPN0

a
1� q2k ek�1,k b 1,

b� � p
¸
kPN

qk ekkq b S,

where the eij denote the standard matrix units, and where S denotes the forward bilateral shift.

Then the von Neumann bialgebra pL8pSUqp2qq,∆�q consists of the von Neumann algebra

L8pSUqp2qq � Bpl2pI�qqb̄L pZq � BpH�q,

equipped with the unique unital normal �-homomorphism

∆� : L8pSUqp2qq Ñ L8pSUqp2qqb̄L8pSUqp2qq

which satisfies "
∆�pa�q � a� b a� � qb�� b b�
∆�pb�q � b� b a� � a�� b b�.

This particular von Neumann bialgebra pL8pSUqp2qq,∆�q will in fact have some extra structure
which really qualifies it as ‘the space of bounded measurable functions on a (locally) compact quan-
tum group’, but we will not need this extra structure in this paper.
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Of course, one has to verify that the above definition is meaningful. There are two ways of establishing
this: the first and more natural one is to introduce first SUqp2q in a different way (by considering
say its associated Hopf �-algebra), and then to use its extra structure (the existence of an invariant
positive state) to pass to the von Neumann algebra level, and to prove the equivalence with the above
definition.

A second way consists of finding a unitary which implements ∆� on the generators a� and b�. The
coassociativity condition will then automatically be satisfied, since it is satisfied on the generators
a� and b� of L8pSUqp2qq. This method is a lot more computational, and makes use of some non-
trivial q-analytic facts. However, it is this approach which is most suited for the purpose of this article.

Before introducing this method, let us first make some remarks on notation. We will use standard
notation for all things q (see [6]). More precisely, for n P NY t8u and a P C, we denote

pa; qqn �
n�1¹
k�0

p1� qkaq,

and
pa1, a2, . . . , am; qqn � pa1; qqnpa2; qqn . . . pam; qqn,

while we denote by rϕs the basic hypergeometric functions. We also borrow the following notation
from [11].

Definition 0.3. The entire function z Ñ Ψ

�
a
b
| q, z



, depending on the parameters a, b P C, is

defined as

Ψ

�
a
b
| q, z



�

8̧

n�0

pa; qqnpbqn; qq8
pq; qqn p�1qnq 1

2
npn�1qzn.

Then if b P Czq�N, we have

Ψ

�
a
b
| q, z



� pb; qq8 1ϕ1

�
a
b
| q, z



.

We can now state the following Proposition. We refer to Appendix A for some information on how it
can be deduced from well-known observations in the literature.

Proposition 0.4. Writing again I� � N, we denote by P�
q2

the following function on I� � I� � I�:

P�
q2
pp, v, wq � p�qqp�wqpp�wqpv�wq pq2w�2; q2q1{28

pq2; q2q8pq2p�2, q2v�2; q2q1{28

Ψ

�
q2v�2

q2v�2w�2 | q2, q2p�2w�2



,

or equivalently,

P�
q2
pp, v, wq � p�1qpqvw�ppv�w�1q pq2v�2, q2p�2; q2q1{28

pq2; q2q1{28 pq2; q2q1{2w
3ϕ2

�
q�2w q�2v q�2p

0 0
| q2, q2



. (1)

Then for r, s, t P Z and p P I�, the vectors

ξ�r,s,p,t �
¸

v,wPI�
v�w�t

P�
q2
pp, v, wqev b er�p�w b ew b es�p�v
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form an orthonormal basis of H� bH� � pl2pI�q b l2pZqq b pl2pI�q b l2pZqq.

Moreover, denoting by W� the unitary

W� : H� bH� Ñ l2pZq b l2pZq bH� : ξ�r,s,p,t Ñ er b es b ep b et,

we have
W �
�p1b xqW� � ∆�pxq, for all x P L8pSUqp2qq � Bpl2pI�qqb̄L pZq.

Note that there is some freedom in the choice of the ξ�r,s,p,t if we only want them to implement the
comultiplication. However, the above form is the most natural one to choose.

Let us now move on to the quantum group rEqp2q. Also this object was introduced by Woronowicz
(at least on the operator algebraic level, [21]), and is a q-version of the group of matrices

t
�
a 0
b a�1



| a, b P C, |a| � 1u,

which has an alternative abstract description as the double cover of the group Ep2q of Euclidian trans-
formations of the plane. Also in this case, one has a set of different structures to consider, depending
on which function algebra one is interested in. However, the passage between these structures, no-
tably between the algebra of polynomial functions and the algebra of bounded continuous/measurable
functions, is now not so straightforward as in the previous case. The main obstacles are the lack of
a well-behaved invariant functional on the purely algebraic level, and the necessity to work with
unbounded operators in the operator algebraic setting. This prohibits to treat the possible correspon-
dence within a general framework. For the particular case of rEqp2q however, things are still quite
well-behaved.

The following definition of rEqp2q is essentially the one which appears in [21], but lifted to the von
Neumann algebraic setting.

Definition 0.5. Denote I0 � Z, and denote by H0 the Hilbert space l2pI0q b l2pZq. Consider on it
the unitary operator

a0 � S� b 1,

where S� denotes the backward bilateral shift (acting on the first factor), and the unbounded normal
operator b0 which has the linear span of basis vectors en b ek as its core, with

b0 en b ek � qn en b ek�1, k, n P Z.

Then the von Neumann bialgebra pL8p rEqp2qq,∆0q consists of the von Neumann algebra

L8p rEqp2qq � Bpl2pI0qqb̄L pZq � BpH0q,

equipped with the unique unital normal �-homomorphism

∆0 : L8p rEqp2qq Ñ L8p rEqp2qqb̄L8p rEqp2qq
which satisfies "

∆0pa0q � a0 b a0
∆0pb0q � b0 b a0 9�a�0 b b0,

where 9� means ‘the closure of the sum of two unbounded operators’.
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Also in this case, pL8p rEqp2qq,∆0q carries extra structure which makes rEqp2q eligible to be called a
locally compact quantum group.

As for SUqp2q, it is of course not obvious on first sight that the above definition makes sense. But
one can again find a unitary implementing it: the following Proposition could in principle be deduced
from the results of [10], but we will give another argument in the main body of the text, based on
Proposition 0.4 and the results of [2] (see Proposition 4.2).

Proposition 0.6. Writing again I0 � Z, we denote by P 0
q2 the following function on I0 � I0 � I0:

P 0
q2pp, v, wq � p�qqp�wqpp�wqpv�wq 1

pq2; q2q8Ψ

�
0

q2v�2w�2 | q2, q2p�2w�2



.

Then for r, s, t P Z and p P I0 � Z, the vectors

ξ0r,s,p,t �
¸

v,wPI0
v�w�t

P 0
q2pp, v, wqev b er�p�w b ew b es�p�v

form an orthonormal basis of H0 bH0 � pl2pI0q b l2pZqq b pl2pI0q b l2pZqq.

Moreover, denoting by W0 the unitary

W0 : H0 bH0 Ñ l2pZq b l2pZq bH0 : ξ0r,s,p,t Ñ er b es b ep b et,

we have
W �

0 p1b xqW0 � ∆0pxq, for all x P L8p rEqp2qq � Bpl2pI0qqb̄L pZq.

Finally, we have the locally compact quantum group �SU qp1, 1q to discuss. A first question that im-

mediately comes to mind is: why �SU qp1, 1q and not SUqp1, 1q? This is because of the ‘no-go theorem’
of Woronowicz (cf. [22]), which says that SUqp1, 1q simply can not exist as a locally compact quantum
group. This is not as bad as it sounds: due to a key observation of Korogodsky ([13]), it turns out
that a close companion to SUp1, 1q allows a q-deformation into a locally compact quantum group,

namely the normalizer �SUp1, 1q of SUp1, 1q inside SLp2,Cq. But one had to wait till [11] for the
first rigorous results that this object really existed in the operator algebraic framework (and more
particularly, fitted in the setting of [14]).

The presentation in [11] in fact started from a concrete unitary implementing the coalgebra structure,
because it turned out that the accompanying Hopf algebra structure was too weak to capture all nec-
essary information. Hence the treatment of this quantum group had a lot more q-analytic machinery
running in the background.

To state the definition of �SU qp1, 1q, we first present some auxiliary notation as in the original paper
[11].

Notation 0.7. We denote I
p�q
� � Z, I

p�q
� � N�

0 � tm P Z | m   0u, and I� � I
p�q
� \ I

p�q
� , the

disjoint union. We write p P Ip�q as p� when we interpret it as an element in I�, and we write p for
an indeterminate element in tp�, p�u. We denote

c : I� Ñ Z2 : p� Ñ �,

so that p � pcppq.

5



The way in which we will present the definition is slightly different from the one in [11]. We again
refer to appendix A for more information on the equivalence between the two definitions.

Definition 0.8. Denote by P�
q2

the following function on I� � I� � I�: for ρ, ν, ω P t�u, we put

P�
q2
ppρ, vν , wωq � p�ρqqp�w?

2
νv�1q

1
2
pp�v�wqpp�v�w�1q

� p�ρq
�2p,�νq�2v; q2q1{28

pq4; q4q8p�ωq�2w; q2q1{28

�Ψ
� �νq2v�2

νωq2v�2w�2 | q2, ρωq2p�2w�2



.

Denote H� � l2pI�q b l2pZq. Then for p P I� and r, s, t P Z, the vectors

ξ�r,s,p,t �
¸

v,wPI�
v�w�t

cpvqcpwq�cppq

P�
q2
pp,v,wqev b er�p�w b ew b es�p�v

form an orthogonal basis of H� bH�.

If we then define W� as the unitary

W� : H� bH� Ñ l2pZq b l2pZq bH� : ξ�r,s,p,t Ñ er b es b ep b et,

the application
xÑ ∆�pxq :�W �

�p1b xqW�

defines a von Neumann bi-algebra structure on L8p�SU qp1, 1qq � Bpl2pI�qqb̄L pZq.
We will not present here the associated (and incomplete) Hopf algebraic picture. We refer the reader
to the original paper [11] for this. However, it should be mentioned that the incompleteness of the
Hopf algebraic picture is in some sense related to the fact that in the operator algebraic picture,

certain ‘off-diagonal corner operators’ are introduced, namely the ones intertwining the I
p�q
� and

Ip�q-part. In the Hopf-algebraic setting, there is no trace of these. For this reason, we have some
doubt that �SU qp1, 1q should really be interpreted as a q-deformation of �SUp1, 1q. Rather, it seems
to us that it is a ‘non-commutative blow-up’ of the ordinary SUp1, 1q-group (by changing C into the
Morita equivalent M2pCq, in some vague sense). For this reason, it is perhaps better to stick with
Woronowicz’s nomenclature ‘extended quantum SUp1, 1q-group’.

Connecting the quantum groups by means of a linking quantum
groupoid

We now come to the notion of a linking weak von Neumann bialgebra between these structures. A
general theory of such objects was treated in [4] (see also [2] for some motivation), but we will here
only present the essence of the structure for the situation at hand.

The observation is quite simple: consider the Hilbert spaces H�,H0 and H� introduced in the
definitions of the previous subsection, and form the direct sum Hilbert space H � H� `H0 `H�,

which we may present in the column form

�� H�

H0

H�

�. Then we have a left action on this by the direct

sum von Neumann algebra

L8p�SU qp1, 1qq `L8p rEqp2qq `L8pSUqp2qq �
�� L8p�SU qp1, 1qq 0 0

0 L8p rEqp2qq 0
0 0 L8pSUqp2qq

�.
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But the definition of the von Neumann algebras of these quantum groups immediately suggests how
this pattern can be completed at the non-diagonal entries: simply define

L pµ, νq � Bpl2pIνq, l2pIµqqb̄L pZq,

where µ, ν P t�, 0,�u, and with the Iµ defined in the definitions of the previous subsection. Then
the L pµ, µq coincide with the L8-von Neumann algebras of our respective quantum groups, while
we now also have the action of

Q �
�� L p�,�q L p�, 0q L p�,�q

L p0,�q L p0, 0q L p0,�q
L p�,�q L p�, 0q L p�,�q

� on

�� H�

H0

H�

�.
(We want to stress however that the L pµ, νq for µ � ν are not von Neumann algebras, only Hilbert
W�-bimodules!)

The next objective is then to generalize the comultiplications of the diagonal entries L pµ, µq to
the off-diagonal parts. Also this is easy to do given all the structure at hand. To introduce this
comultiplication, let us first remark that by the notation L pµ, νqb̄L pµ, νq, we mean the σ-weak
closure of the algebraic tensor product of these two spaces inside BpHν b Hν ,Hµ b Hµq. We can
then collect all these tensor products together in a balanced or ‘C3-fibred’ tensor product of Q with
itself:

Q �Q :�
�� L p�,�qb̄L p�,�q L p�, 0qb̄L p�, 0q L p�,�qb̄L p�,�q

L p0,�qb̄L p0,�q L p0, 0qb̄L p0, 0q L p0,�qb̄L p0,�q
L p�,�qb̄L p�,�q L p�, 0qb̄L p�, 0q L p�,�qb̄L p�,�q

�,
which is a unital von Neumann subalgebra of B

�� H� bH�

H0 bH0

H� bH�

�. The von Neumann algebra Q � Q

can also be identified with a corner of the tensor product Qb̄Q, namely with hpQb̄Qqh, where h is
the projection

h � 1� b 1� � 10 b 10 � 1� b 1�,

the 1µ denoting the units in L pµ, µq. (It is clear how to form then the triple fibred product Q �Q �Q
etc.)

We can now define the comultiplication maps ∆µν on the off-diagonal parts: they are given by

∆µν : L pµ, νq Ñ L pµ, νqb̄L pµ, νq : xÑW �
µ p1b xqWν ,

where the Wµ were defined in the definitions of the previous subsection. Of course, one must prove
that ∆µν has the above range, but this is not so difficult to establish in a direct manner (see e.g. the
proof of Proposition 3.8 in [11]). We can further collect these maps together into a map

∆Q : QÑ Q �Q � Qb̄Q

by the formula

∆Qp
�� x�� x�0 x��

x0� x00 x0�
x�� x�0 x��

�q �
�� ∆��px��q ∆�0px�0q ∆��px��q

∆0�px0�q ∆00px00q ∆0�px0�q
∆��px��q ∆�0px�0q ∆��px��q

�,
where xµν P L pµ, νq. This map is then obviously a faithful normal �-homomorphism by definition of
the maps ∆µν . Whether it is unital depends on the precise choice of range: if one takes Q �Q as the
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range, then the map is unital; on the other hand, if one chooses Qb̄Q as the range, then it is not.
This is simply because the unit of Q � Q is the projection ∆Qp1q � h of Qb̄Q which we introduced
above.

We can now state one of the main observations in this paper.

Theorem 0.9. The comultiplication ∆Q : QÑ Qb̄Q is coassociative.

Using the terminology of [1] in the von Neumann algebraic setting, this will qualify pQ,∆Qq as a
weak von Neumann bialgebra. Because of its particular structure, we call it a (3�3-)linking weak von
Neumann bialgebra (see [4]). It can be interpreted as (the groupoid von Neumann algebra pertaining
to) a kind of quantized groupoid with three classical objects and the duals of the quantum groups

SUqp2q, rEqp2q and �SU qp1, 1q as its isotropy groups. This is also the reason why we then call these
duals ‘Morita equivalent quantum groups’, as the previous description is closely related to how Morita
equivalence between (classical) groupoids is defined by means of a linking groupoid. See again [2] for
some more intuition behind these concepts.

Projective corepresentations

We now comment on the way we prove this Theorem. Our method is not straightforward, and in
fact, we must admit that we have not even tried very hard to prove Theorem 0.9 by direct means.
This is because we hope that our method, though roundabout, is much better suited for generalization.

The main idea to prove Theorem 0.9 is the following. We first make the apparently unrelated and
easy observation that for a locally compact group G, there is a close connection between actions on
(separable) type I-factors on the one hand (i.e., actions on von Neumann algebras of the form BpH q
for some (separable) Hilbert space H ), and (measurable) unitary 2-cocycle functions on G on the
other. Indeed, given such an action, one can choose for each group element a unitary implementing the
associated automorphism, and this will then provide one with an Ω-projective representation for some
unitary 2-cocycle function Ω (which can be taken to be measurable if the unitaries are well-chosen).

The philosophy is now that in the quantum setting, the proper generalization of a 2-cocycle function
is a (2�2-)linking weak von Neumann bialgebra. Indeed, we showed in [4] that, given any coaction of
a von Neumann bialgebra on a type I-factor (which we then called a projective corepresentation, see
section 1 of the present article), one can construct from this a linking weak von Neumann bialgebra
(uniquely determined up to isomorphism). Observe that we started with one von Neumann bialgebra,
but that a linking weak von Neumann bialgebra has two von Neumann bialgebras inside. Indeed,
the other von Neumann bialgebra is ‘hidden somewhere’ in the projective corepresentation! This is
a generalization of the notion of twisting a von Neumann bialgebra by means of a unitary 2-cocycle.
(In fact, our main example will arise from a genuine 2-cocycle twisting, but in a non-natural way. We
will therefore not emphasize it in this paper, but refer to Proposition 4.3 of [4] to see the connection.)

The main observation then is that for SUqp2q, there are two very natural such projective repre-
sentations, namely by considering the action on either the standard Podleś sphere, or on a certain
Z2-quotient of the equatorial Podleś sphere (which can be interpreted as a quantum projective plane,
[8]). Indeed, one can show that the von Neumann algebras associated with these quantum homoge-
neous spaces are both type I-factors. Thus one can consider their associated 2�2-linking weak von
Neumann bialgebras, and combine them (by a composition procedure) into a 3�3-linking weak von
Neumann bialgebra. This will turn out to be precisely the object described in Theorem 0.9, hence
proving the claimed coassociativity property in an indirect way.
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Of course, with this discussion alone, it is not clear why one should expect the quantum groups rEqp2q
and �SU qp1, 1q to pop out of these constructions. In fact, we are not sure if one can figure out a priori
precisely which quantized Lie group will appear, but one can get some information on its associated
quantized Lie algebra. Indeed, in [3], an infinitesimal picture was presented of a dual version of the
object pQ,∆Qq. This is in fact how we discovered the possibility to ‘deform’ or ‘twist’ SUqp2q into
the other two quantum groups (see [3] for some more information, and for the link with actions on
quantum homogeneous spaces).

It is our hope then that this method will allow us to obtain locally compact quantum group versions of
q-deformations of some higher-dimensional Lie groups. (We are allowed to use the terminology locally
compact quantum groups, which correspond to von Neumann bialgebras with invariant weights, by
Proposition 3.7 of [4].) Indeed, the fact that as complicated a quantum group as �SU qp1, 1q can be
obtained from this procedure, gives good hope. We want to stress that the advantage of this method
is the following: actions of a compact quantum group, even on a type I-factor, can be described in a
purely algebraic way. Then our general principle gives for free a new locally compact quantum group
(and a linking structure), and the difficult analytic computations are relegated to an identification
problem, not an existence problem. However, at the moment of writing, such generalizations have
not been attempted yet, so it may well be that we are looking at an isolated phenomenon in the
setting of quantum Lie groups (though it should be mentioned that on the infinitesimal level, the
higher-dimensional analogues are very easily obtained).

Contents of the paper

In the first section, we will state the main facts concerning the theory of projective corepresentations
of von Neumann bialgebras (taken from [4]).

The second section begins with some preliminaries on the action of SUqp2q on the so-called ‘equatorial
Podleś sphere’ and on the quantum projective plane (we take [8] as the reference here, since both these
objects are treated there together, and moreover the same conventions as ours are used). We then
present the spectral decomposition of the action of SUqp2q on the quantum projective plane (but rel-
egate the proof to appendix B), and find in this way a concrete unitary which ‘implements’ this action.

In the third section, we apply to this action the ‘projective corepresentation ñ linking weak von Neu-
mann bialgebra’ construction we explained in the introduction, and show that the resulting object
coincides with a 2�2-corner of the structure described in Theorem 0.9. In particular, this will show
that this 2�2-corner has indeed a coassociative coproduct.

In the fourth section, we revisit some of the material of [2] to show that another of the 2�2-corners
of the object in Theorem 0.9 has a coassociative coproduct. We then end this section with the proof
of Theorem 0.9.

In Appendix A, we show that the definitions of SUqp2q, rEqp2q and �SU qp1, 1q we gave in the introduc-
tion are equivalent to the usual ones. In Appendix B, we carry out the computation of the spectral
decomposition of SUqp2q on the quantum projective plane. In Appendix C, we prove some summation
formulas for basic hypergeometric functions which were used in the article.

Conventions and notations

By N, we denote the set of natural numbers with zero included. By N0, we mean Nzt0u. (This is
important to mention since another convention is followed in [11]!)
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We will mostly work with Hilbert spaces of the form l2pIq, where I is an index set. We then denote
by ei the canonical basis vectors, and by eij the corresponding canonical matrix units in Bpl2pIqq. We
denote by ωij the normal functional xei, � ejy on Bpl2pIqq (we assume linearity in the second factor).
When we write eij or ej with i or j R I, the element is interpreted to be zero.

The spatial tensor product between von Neumann algebras is denoted b̄. The ordinary tensor prod-
uct between Hilbert spaces is denoted as b. The algebraic tensor product between vector spaces is
denoted as d.

When A � BpH1,H2q and B � BpH2,H3q are linear spaces of maps between certain Hilbert spaces,
we will denote B �A � t°n

i�1 biai | n P N0, bi P B, ai P Au.

We use the leg numbering notation for operators on tensor products of Hilbert spaces, as is customary
in quantum group theory. E.g., if Z : H b2 Ñ H b2 is a certain operator, we denote by Z13 the op-
erator H b3 Ñ H b3 acting as Z on the first and third factor, and as the identity on the second factor.

In many formulas, we will use the notation � and 	. This means that such a formula splits up into
two formulas, one in which every � is replaced by � and 	 by �, and one in which � is replaced by
� and 	 by �.

1 Projective corepresentations

We already used the terminology ‘projective corepresentation of a von Neumann bialgebra’ in the
introduction. Let us be a spell out the definition.

Definition 1.1. Let pM,∆M q be a von Neumann bialgebra, and H a Hilbert space. By a (unitary
left) projective corepresentation of pM,∆M q on H , we mean a coaction

α : BpH q ÑMb̄BpH q,

that is, a faithful unital normal �-homomorphism satisfying the coaction property

pιb αqα � p∆M b ιqα.

For the applications in the subsequent sections, we will always have H � l2pNq (in a ‘natural’ way).
For the rest of this section, we then fix a von Neumann bialgebra pM,∆M q and a left coaction α of
pM,∆M q on Bpl2pNqq. We further assume that M is represented on a Hilbert space K in a normal,
faithful, unit-preserving way, so that we may identify M � BpK q.

The following notion was introduced in [4].

Definition 1.2. Denote I � αpe00qpK b l2pNqq. The unitary

G : K b l2pNq Ñ I b l2pNq : ξ Ñ
¸
iPI

pαpe0iqξq b ei

will be called the implementing unitary of α.

It is easy to see that the above map G is indeed a well-defined unitary. Its adjoint is given by

G� : I b l2pNq Ñ K b l2pNq : ξ b δi Ñ αpei0qξ.
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For any x P Bpl2pNqq, we then have
G�p1b xqG � αpxq,

which follows most easily if one takes x a matrix unit. We also note that the matrix coefficients of G
may be interpreted as Clebsch-Gordan coefficients of α.

Remark: For the purposes of this section, it will be convenient to keep I the concrete Hilbert space as
given above. However, in the later applications, it is more suitable to ‘reparametrize’ I , i.e. to take a
unitarily equivalent copy. In this paper, this will not cause any difficulties. However, we remark that
taking a different parametrization inside the same Hilbert space has some representation-theoretic
consequences (see [4], Proposition 3.5).

Notation 1.3. We denote N � BpK ,I q for the σ-weak closure of the linear span of the set

tpιb ω0iqpGqm | i P N,m PMu � BpK ,I q,

i.e. the σ-weak closure of the right M -module generated by the elements in the first row of G. We
denote O � N� � BpI ,K q for the space of adjoints of elements in N . Finally, we denote by P the
σ-weak closure of the set O �N � BpI q.
By definition, N is a right M -module. It is further easy to compute that

pιb ω0iqpGq�pιb ω0kqpGq � pιb ωikqpαpe00qq PM, for all i, k P N,

so that O �N �M � BpK q. We then also have that N �O � BpI q is a �-algebra, and hence P is a
von Neumann algebra.

The following was proven in [4], Proposition 3.6. The proof is not very hard, and follows quite
immediately from the two distinguishing properties of G, namely its unitarity and the fact that it
implements α.

Proposition 1.4. Write Q for the space�
P N
O M



� Bp

�
I
K



q.

Then Q is a unital von Neumann subalgebra of Bp
�

I
K



q. Moreover, we have N �K is norm-dense

in I and O �I is norm-dense in K .

The final properties imply that pQ, eq, with e �
�

1P 0
0 0



, will be a linking von Neumann algebra

(between P and M), in the sense that both e and p1� eq are full projections (i.e. O �N and N �O are
σ-weakly dense in respectively M and P ). We will occasionally write the components P,N,O,M as
Qij , i, j P t1, 2u.

We now show that the von Neumann algebra Q of the previous Proposition is endowed with more
structure, namely, that it carries a coassociative comultiplication. For the proof of the following
Proposition, we again refer to [4], Proposition 3.6.

Proposition 1.5. Let G be the unitary implementing the projective corepresentation α : Bpl2pNqq Ñ
Mb̄Bpl2pNqq, and let Q �

�
P N
O M



be the von Neumann algebra as constructed above.
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Then G P Nb̄Bpl2pNqq, and, denoting

Q �Q �
�
P b̄P Nb̄N
Ob̄O Mb̄M



� Bp

�
I bI
K bK



q,

there exists a unique unital, normal, faithful and coassociative �-homomorphism ΓQ : QÑ Q�Q such
that ΓQpQijq � Qijb̄Qij, such that the restriction of ΓQ to M coincides with ∆M , and such that,
denoting by ΓN the restriction of ΓQ to N , we have

pΓN b ιqpGq � G13G23.

The previous Proposition thus shows how the coaction α of pM,∆M q on Bpl2pNqq has given rise to
a linking weak von Neumann bialgebra pQ,ΓQq (see Definition 0.3 of [4]), and in particular to a new
von Neumann bialgebra pP,ΓP q � pQ11,Γ11q. It is this construction method which we explained in
the introduction.

In this paper, the projective corepresentation α under consideration will be the restriction of another
coaction rα. The following discussion is devoted to the extra structure that will be present in this case.

Consider the von Neumann algebra Bpl2pNqq ` Bpl2pNqq. We can identify it with CpZ2, Bpl2pNqqq,
the space of functions from Z2 to Bpl2pNqq, where we will write Z2 � t�,�u for convenience. We can
then consider the following maps: the projection maps obtained by evaluation,

π� : Bpl2pNqq `Bpl2pNqq Ñ Bpl2pNqq : xÑ xp�q,

and the diagonal embedding map

d : Bpl2pNqq Ñ Bpl2pNqq `Bpl2pNqq : xÑ dpxq � x` x.

Then π� � d � π� � d � ιBpl2pNqq, the identity map. We also have the flip map

σ : Bpl2pNqq `Bpl2pNqq Ñ Bpl2pNqq `Bpl2pNqq : x` y Ñ y ` x,

which induces an action of Z2. Then dpBpl2pNqq consists precisely of the fixed elements for σ. We will

further write e
p�q
kl � 0` ekl and e

p�q
kl � ekl` 0, and similarly for the units in these fibers: 1p�q � 0` 1

and 1p�q � 1` 0.

We will now assume that the von Neumann bialgebra pM,∆M q has a coaction

rα : Bpl2pNqq `Bpl2pNqq ÑMb̄pBpl2pNqq `Bpl2pNqqq,

which is equivariant with respect to σ:

rα � σ � pιb σq � rα.
Then it is clear that rα restricts to a coaction of M on dpBpl2pNqqq. We then further assume that our
given coaction α on Bpl2pNqq and the restriction of rα to dpBpl2pNqqq coincide by the isomorphism
d : Bpl2pNqq Ñ dpBpl2pNqqq: rα � d � pιb dqα.
Notation 1.6. We denote

rα� � pιb π�qrα : CpZ2, Bpl2pNqqq ÑMb̄Bpl2pNqq.
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For the following Proposition, recall that we use the notation G for the projective unitary corepresen-
tation associated with α (Definition 1.2), the notation I for the space αpe00qpK b l2pNqq, and the
notation pP,ΓP q for the von Neumann bialgebra as constructed in Proposition 1.5.

Proposition 1.7. Denote re � rα�p1p�q � 1p�qq PMb̄Bpl2pNqq.
Then there exists a self-adjoint grouplike unitary e in P such that re � G�peb 1qG.

Recall that the group-like property means that ΓP peq � eb e.

Proof. Denote

p̆� � rα�pep�q00 q,
p̆� � rα�pep�q00 q,

then p̆� and p̆� are orthogonal projections summing to αpe00q. In particular, p̆� ¤ αpe00q, and
hence they correspond to projections p� in BpI q by the formula p̆� � G�pp� b e00qG. Since p̆� P
Mb̄Bpl2pNqq, we actually have

p� �
¸
k,lPN

pιb ω0kqpGqpιb ωklqpp̆�qpιb ω0lpGqq� P P.

Then e :� p� � p� is a self-adjoint unitary in P . We prove that it satisfies the conditions above.

Write q� � rα�p1p�qq. Then we have, for ξ P L 2pMq b l2pNq:

G�pp� b 1qGξ � G�pp� b 1q
¸
i

pαpe0iqξq b ei

� G�pp� b 1q
¸
i

prα�pdpe0iqqξq b ei

� G�
¸
i

prα�pep�q00 pep�q0i � e
p�q
0i qqξq b ei

� G�
¸
i

pαpe0iqrα�pep�qii qξq b ei

�
¸
i

αpeiiqprα�pep�qii qξq

�
¸
i

rα�pep�qii qξ

� q�ξ.

This proves that re � G�peb 1qG.

We now prove that e is grouplike. First, we compute that

pΓP peq b 1qG13G23 � pΓP peq b 1qpΓN b ιqpGq
� pΓN b ιqppeb 1qGq
� pΓN b ιqpGreq
� G13G23p∆M b ιqpreq.
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On the other hand,

peb eb 1qG13G23 � ppeb 1qGq13ppeb 1qGq23
� pGreq13pGreq23
� G13re13G23re23
� G13G23pιb αqpreqre23.

So from the above two computations, we see that it is sufficient to see if

pιb αqpreqre23 � p∆M b ιqpreq,
i.e. that re is an α-cocycle. Bringing re23 to the other side, and writing out the expressions with use of
the coaction property pιb rαqrα � p∆M b ιqrα, this becomes, writing f � 1p�q � 1p�q,

pιb αqprα�pfqq � pιb rα�qprαpfqp1b fqq.

Now
pιb αqprα�pfqq � pιb rα�qppιb dqrα�pfqq,

so it is sufficient to prove that
pιb dqrα�pfq � rαpfqp1b fq,

which is equivalent with the identity rα�pfq � �rα�pfq. But this follows immediately from the
equivariance of rα with respect to σ, and the fact that σpfq � �f .

It is convenient to split up G with the aid of the projections constituting the group-like element e
above.

Notation 1.8. Let rα be a σ-equivariant coaction of M on Bpl2pNqq ` Bpl2pNqq which restricts to α
as above. Let e P P be the group-like element of Proposition 1.7, and write e � p� � p� with p� and
p� orthogonal projections in P . Then we write

Gp�q � pp� b 1qG.

It is clear that Gp�q are then isometries with range pp�I q b l2pNq. Let us record the following fact.

Lemma 1.9. Using the notation from Proposition 1.5 (with respect to α) and the Notation 1.8, we
have that Gp�q P Nb̄Bpl2pNqq and

pΓN b ιqGp�q � Gp�q13 Gp�q23 � Gp�q13 Gp	q23 .

Proof. As p� P P , it is immediate that Gp�q � pp�b1qG P Nb̄Bpl2pNqq. Moreover, as e is a group-like
element in P , it follows that

ΓP pp�q � p� b p� � p� b p�

and
ΓP pp�q � p� b p� � p� b p�.

As ΓN pxyq � ΓP pxqΓN pyq for x P P and y P N , and pΓN b ιqG � G13G23, the formula in the statement
of the Lemma follows.
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2 On the action of SUqp2q on the quantum projective

plane

2.1 The equatorial Podleś sphere and the quantum projective plane

In [2], we showed how one can apply the theory of the previous section to the action of SUqp2q on
the standard Podleś sphere (i.e. the one which arises as the quotient space by the S1-action). In this
paper, we will need to consider another Podleś sphere, namely the equatorial one (which is the other
extreme point in the moduli space of Podleś spheres). Let us recall the definition in the version which
will be of most use to us. The equivalence of this definition with the ordinary one as a universal object
can be found for example in [8]. We also refer to that paper for the notion of the quantum projective
plane (note that this ‘projective’ is unrelated to the one of the previous section!). We will keep using
the notations s, d and π� we introduced near the end of the previous section.

Definition 2.1. Denote by Y p�q and W p�q the following operators on l2pNq:
Y p�q � �

¸
kPN0

a
1� q4k ek�1,k,

W p�q Ñ �
¸
kPN

q2k ekk.

Consider then Y,W P CpZ2, Bpl2pNqqq � Bpl2pNqq `Bpl2pNqq, with

Y pµq :� Y pµq,

W pµq :�W pµq.

Then the unital C�-algebra CpS2
q8q generated by Y and W is called the space of continuous functions

on the equatorial Podleś sphere S2
q8.

The Z2-action σ on CpZ2, Bpl2pNqqq restricts to an action of Z2 on CpS2
q8q, given on the generators

as σpY q � �Y and σpW q � �W . We denote the space of Z2-fixed elements as CpRP 2
q q, and call it

the space of continuous functions on the quantum projective plane RP 2
q .

It is well-known that SUqp2q has a natural ergodic action rα on S2
q8. Since it commutes with the

Z2-action (see e.g. Remark 4.2 in [8]), we then also have an ergodic action α of SUqp2q on RPqp2q.
Now in Lemma 6.5 of [18], it is shown that the ensuing SUqp2q-invariant state rω on CpS2

q8q is obtained
by applying the functional rωpxq � 1

2
pωpxp�qq � ωpxp�qqq

on CpS2
q8q � CpZ2, Bpl2pNqqq, where ω is Trp �Dq with D the trace class operator p1� q2qDiagpq2kq.

From this, and the fact that CpS2
q8q2 � CpZ2, Bpl2pNqqq, it follows that the von Neumann algebra

L8pS2
q8q � π

rωpCpS2
q8qq2, with π

rω the GNS-representation, may be identified with CpZ2, Bpl2pNqqq,
in such a way that π

rωpY q and π
rωpW q coincide with respectively Y and W .

It then also follows that L8pRP 2
q q � π

rωpCpRP 2
q qq2 may be identified with Bpl2pNqq � dpBpl2pNqqq �

CpZ2, Bpl2pNqqq, the space of constant functions from Z2 to Bpl2pNqq.

As it is well-known (and easy to show) that any ergodic action of SUqp2q on a C�-algebra can be
completed to a coaction of L8pSUqp2qq on the von Neumann algebraic completion of the C�-algebra
in its GNS-representation with respect to the action-invariant state on it, we then obtain, from the
ordinary algebraic definition of the actions of SUqp2q on the equatorial Podleś sphere (cf. [17],[16])
and on the quantum projective plane, the following von Neumann algebraic descriptions.
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Definition 2.2. We denote by rα the unique coaction of L8pSUqp2qq on L8pS2
q8q � CpZ2, Bpl2pNqqq

such that rαpY �q � pa��q2 b Y � � qp1� q2qa��b� bW � qb2� b Y.rαpW q � a��b
�
� b Y � � p1� p1� q2qb��b�q bW � b�a� b Y,rαpY q � �qpb��q2 b Y � � qp1� q2qb��a� bW � a2� b Y,

This coaction is then Z2-equivariant.

We denote by α the restriction of rα to a coaction on L8pRP 2
q q � Bpl2pNqq � dpBpl2pNqqq.

Note then in particular that α is a coaction of the form treated in the final part of the previous section.

2.2 Spectral decomposition of the SUqp2q-action on the quantum
projective plane

In the previous section, we showed that the action of SUqp2q on the quantum projective plane RP 2
q

gives rise to a coaction
α : Bpl2pNqq Ñ L8pSUqp2qqb̄Bpl2pNqq,

which is hence a projective corepresentation of L8pSUqp2qq on l2pNq in the terminology of Definition
1.1. In this section, we want to find an explicit description of the associated unitary G which we
introduced in Definition 1.2.

Denote again by e
p�q
00 and e

p�q
00 the matrix units at position 00 in resp. the � and � fiber of Bpl2pNqq`

Bpl2pNqq. Then e
p�q
00 are precisely the spectral projections at eigenvalue �1 of W . Hence to determine

αpe00q, we should try to determine the eigenvectors for 1 and �1 of rα�pW q, using the notation
introduced at the end of the previous section (Notation 1.6). To make the enunciation of the following
Proposition and subsequent ones more succinct, the following notation, extending the one in Notation
0.7, will come in handy.

Notation 2.3. We denote J p�q � I
p�q
� for the set Z. We denote J p�q � �Ip�q� � 1 for the set N. We

denote by J the disjoint union J � J p�q \ J p�q.

We then use the same notational conventions for elements in J as for elements in I�.

Proposition 2.4. The spectrum of the operator rα�pW q equals t�q2r, 0 | r P Nu, with 0 not occurring
in the point spectrum.

For r P N, an orthonormal basis for the eigenspace of �q2r is given by the vectors ξ
pt,pq
r,� with p, t P Z

and p� r P J p�q, determined by the formula

ξ
pt,pq
r,� �

8̧

n�0

Qq2pp�, r, nq en b et�n b ep�n P H� b l2pNq,

with

Qq2pp�, r, nq � p	qqrp�1qnq npn�1q
2

p	q2p�2r�2; q2qnpq4p�4n�4; q4q1{28

p	q2p�2r�2; q2q1{28 pq4; q4q1{2r p�1; q2q1{28 pq2; q2q1{2n
� 3ϕ2

�
q�2n q�2r �q�2p�2n

	q�2p�2n�2r 0
| q2, q2



.

16



The proof of this Proposition will be presented in Appendix B.

Now denote by I � It�1,1u � I1 � I�1 the range of the spectral projection of rα�pW q associated
with the set t�1, 1u. This then equals the range space of αpe00q. Further recall that I� denotes the

set I
p�q
� \ I

p�q
� � Z\ N�

0 . Then, by the above results, we can define a unitary map

u : I Ñ H� � l2pI�q b l2pZq : ξ
pt,pq
0,� Ñ e

p�q
�p�1 b ep�t,

where we recall that e
p�q
n � en� for n P I�.

In the following Proposition, we will again use the notation I� � N.

Proposition 2.5. The map

G : H� b l2pNq Ñ bH� b l2pNq : ξ
pt,pq
r,� Ñ e

p�q
�p�r�1 b ep�t�r b er

defines a unitary, and pu� b 1qG coincides with the unitary constructed in Definition 1.2.

Proof. The fact that G is a well-defined unitary is of course immediate by the previous Proposition.

Then, from the way rα�pY �q acts on the non-normalized eigenvectors η
pt,pq
r,� in the proof of Proposition

2.4 (see the identities (4), (5) in Appendix B), we have, for r P N, t P Z and p P J p�q, that

G�pub 1q ξpt,pq0,� b er � G� ep�q�p�1 b ep�t b er

� ξ
pt�2r,p�rq
r,�

� q�rpr�1qpq4; q4q�1{2
r rα�ppYW q�qrξpt,pq0,�

� q�rpr�1qpq4; q4q�1{2
r αppYW q�qrξpt,pq0,�

� αper0qξpt,pq0,� ,

which proves the Proposition.

As mentioned in the first section, we may treat G itself as the implementing unitary of α, as the
unitary u only serves to reparametrize the Hilbert space αpe00qpH� b l2pNqq.

Now further denote

e : l2pI�q b l2pZq Ñ l2pI�q b l2pZq : ep�qn b el Ñ � ep�qn b el,

and denote P� � 1
2p1� eq and

Gp�q � pP� b 1qG.
Then e is precisely the self-adjoint unitary which appeared in Proposition 1.7, so our notation is
consistent with the one introduced in Notation 1.8. It is then also easy to see that

Gp�qrα�pW q � �p1bW p�qqGp�q,
Gp�qrα�pY q � �p1b Y p�qqGp�q.

Hence
Gp�qrα�pxq � �p1b xp�qqGp�q, for all x P L8pS2

q8q.
Write now

Gp�q �
8̧

r,s�0

Gp�qr,s b ers

as a σ-weakly converging sum, where Gp�qr,s : l2pI�q b l2pZq Ñ l2pIp�q� q b l2pZq.
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Proposition 2.6. For n P N, k P Z, we have

Gp�qr,s en b ek � 1?
2
p	qqrp�1qnq npn�1q

2
p	q2s�2r�2n�2; q2q1{2n pq2n�2; q2q1{28

p	q2s�2r�2; q2q1{28 pq4; q4q1{2r pq4; q4q1{2s

� 3ϕ2

�
q�2n q�2r �q�2s

	q�2s�2r 0
| q2, q2



e
p�q
n�r�s�1 b ek�r�s.

Remark: Using transformation formula (III.11) of [6], we have

3ϕ2

�
q�2n q�2r �q�2s

q�2s�2r 0
| q2, q2



� p�1qn 3ϕ2

�
q�2n �q�2r q�2s

q�2s�2r 0
| q2, q2



.

Hence we can also write

Gp�qr,s en b ek � 1?
2
p	qqrq npn�1q

2
p	q2s�2r�2n�2; q2q1{2n pq2n�2; q2q1{28

p	q2s�2r�2; q2q1{28 pq4; q4q1{2r pq4; q4q1{2s

� 3ϕ2

�
q�2n �q�2r q�2s

	q�2s�2r 0
| q2, q2



e
p�q
n�r�s�1 b ek�r�s.

Proof. We have that for n P N, k, l P Z and m P Ip�q� ,

xep�qm b el,Gp�qr,s en b eky � xep�qm b el b er,Gp�q en b ek b esy
� xpGp�qq� ep�qm b el b er, en b ek b esy
� xξpl�2r�m�1,�m�r�1q

r,� , en b ek b esy
� δm,n�r�s�1δl,k�r�sxξpk�n,s�nqr,� , en b ek b esy

The Proposition then follows immediately by the concrete form of the ξ
pt,pq
r,� given in Proposition 2.4.

Definition 2.7. We define the following operators:

L0� : l2pI�q b l2pZq Ñ l2pI0q b l2pZq : en b ek Ñ pq2n�2; q2q1{28 en b ek,
a0 : l2pI0q b l2pZq Ñ l2pI0q b l2pZq : en b ek Ñ en�1 b ek,

L
p�q
�0 : l2pI0q b l2pZq Ñ l2pI�q b l2pZq : en b ek Ñ q

npn�1q
2 p	q�2n; q2q1{28 e

p�q
n b ek,

f : l2pI�q b l2pZq Ñ l2pI�q b l2pZq : e
p�q
n b ek Ñ p�1qn�1e

p�q
n b ek.

Note that the map L0� also appeared in [2] (and [23]).

Definition 2.8. For r, s P N, we define polynomials K
p�q
r,s as follows:

Kp�q
r,s pxq � 2ϕ1

�
q�2mintr,su �q�2mintr,su

�q2|r�s|�2 | q2, q2x


.

Proposition 2.9. For s ¥ r, we have

Gp�qr,s � p�1qs?
2
q

1
2
pr�sqp3r�s�1q pq4; q4q1{2s

pq4; q4q1{2r
p�q2s�2r�2; q2q8

pq4; q4q8 L
p�q
�0 a

r�s�1
0 fL0�K

p�q
r,s pb�bqbs�r.

For r ¥ s, we have

Gp�qr,s � p�1qr?
2
q

1
2
ps�rqp3s�r�1q pq4; q4q1{2r

pq4; q4q1{2s
p�q2r�2s�2; q2q8

pq4; q4q8 L
p�q
�0 a

r�s�1
0 L0�K

p�q
r,s pb�bqp�qb�qr�s.
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Proof. For s ¥ r, we have, by applying the transformation formula (III.6) of [6] with respect to q�2r

as the terminating factor, that

3ϕ2

�
q�2n q�2r �q�2s

	q�2s�2r 0
| q2, q2



�

p�q2r�2nqr p�q
2s�2r�2; q2qr

p	q2s�2; q2qr 2ϕ1

�
q�2r �q�2r

�q2s�2r�2 | q2, q2n�2



,

while for r ¥ s, we have, applying transformation formula (III.6) of [6] with respect to q�2s as the
terminating factor,

3ϕ2

�
q�2n �q�2r q�2s

	q�2s�2r 0
| q2, q2



�

p�q2s�2nqs p�q
2r�2s�2; q2qs

p	q2r�2; q2qs 2ϕ1

�
q�2s �q�2s

�q2r�2s�2 | q2, q2n�2



.

Then with the above transformation formulas at hand, the Proposition follows straightforwardly from

the formulas for Gp�qr,s in Proposition 2.6 and the remark following it.

Remark: It seems odd that in the formula for Gp�qr,s , an extra ‘parity operator’ f appears when switching
from r ¥ s to s ¥ r. We have no real conceptual reason to explain this phenomenon.

3 Identification of the reflected quantum group

In the previous section, we found an explicit description of the unitary G implementing the projective
corepresentation α of L8pSUqp2qq on Bpl2pNqq � L8pRP 2

q q. As G was defined as a unitary from
H� � l2pI�q b l2pZq to H� � l2pI�q b l2pZq, we will have that the space N for G, introduced in the
Notation 1.3, will be a subspace of BpH�,H�q.
Lemma 3.1. The equality N � L p�,�q holds.

Proof. We recall that L p�,�q was just the space Bpl2pI�q, l2pI�qqb̄L pZq � BpH�,H�q. As it

is immediately observed from Proposition 2.6 that all G0,r � Gp�q0,r � Gp�q0,r commute with 1 b S,

with S the bilateral forward shift on l2pZq, it follows that G0,r � L p�,�q for all r P N. As
L8pSUqp2qq � L p�,�q � Bpl2pI�qqb̄L pZq by definition, and N is generated by the G0,r as a
right L p�,�q-module (again by definition), we obtain the inclusion N � L p�,�q.

Now, using the notation introduced at the end of the previous section, we have Gp�q0,r P N by Lemma

1.9. Take p P N. It follows then from Proposition 2.6, that Gp�q0,0 pep0 b 1q is a non-zero scalar multiple

of the matrix unit epp�1q�,0 b 1 in BpH�,H�q, while Gp�q0,p pe00 b S�pq is a non-zero scalar multiple of
the matrix unit ep�p�1q�,0 b 1. So N contains all matrix units of the form ep,0 b 1, for p P I�. As
N is by definition closed under right multiplication with elements in L p�,�q, it follows that indeed
N � L p�,�q.

It then follows immediately from this Lemma that the linking von Neumann algebra

�
P N
O M



associated with G, using again Notation 1.3, equals precisely the t�,�u-part of the von Neumann

algebra Q in Theorem 0.9, i.e.

�
P N
O M



�
�

L p�,�q L p�,�q
L p�,�q L p�,�q



, with in particular M �

L8pSUqp2qq. We also recall that we denoted by Γ and Γµν (or ΓM ,ΓN , . . .) the comultiplication and
its constituents on Q, as obtained by the method explained in Proposition 1.5. Further recall that we
defined another collection of maps ∆µν on L pµ, νq in the discussion preceding Theorem 0.9.
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Proposition 3.2. The comultiplications ∆µν and Γµν coincide for µ, ν P t�,�u.
From this Proposition (and from Proposition 1.5), it will then immediately follow that the ∆µν for
µ, ν P t�,�u are coassociative. In particular, as we will not actually need to use that ∆� is coas-
sociative, this will give an alternative proof for the coassociativity of the comultiplication ∆� on
L8p�SU qp1, 1qq (first established in [11]).

Proof (of Proposition 3.2). The fact that Γ�� � ∆��, the natural comultiplication on L8pSUqp2qq,
was part of Proposition 1.5.

Further, as L p�,�q � L p�,�q�, and L p�,�q �L p�,�q is σ-weakly dense in L p�,�q, the equali-
ties ∆�� � Γ�� and ∆�� � Γ�� will immediately follow from the equality ∆�� � Γ��.

But ∆��pxyq � ∆��pxq∆��pyq and Γ��pxyq � Γ��pxqΓ��pyq for all elements x P L p�,�q and
y P L p�,�q. So we see that it is sufficient to prove, for p P I�, that ∆N pep0 b 1q � ΓN pep0 b 1q.
As both these expressions vanish on ξ�r,s,p,t for p P N0, it is already sufficient to prove that, for

p P I� � Z\ N�
0 and r, s, t P Z, we have

ΓN pep0 b 1qξ�r,s,0,t � ξ�r,s,p,t.

Using the formulas for the Gr,s in Proposition 2.6, we see that for p P N,

Gp�q0,0 pep0 b 1q � 1?
2
q

1
2
ppp�1q p�q�2p�2; q2q1{2p pq2p�2; q2q1{28

p�q2; q2q1{28

epp�1q�,0 b 1

and

Gp�q0,p pe00 b 1q � 1?
2

pq2; q2q1{28

p	q2p�2; q2q1{28 pq4; q4q1{2p
ep�p�1q�,0 b Sp.

Then since, for m,n, p P N and r, s, t, k P Z, we have Γ��pemn b Skqξ�r,s,p,t � δn,p ξ
�
r,s,m,t�k by

Proposition 0.4, and ΓN pxyq � ΓN pxqΓM pyq for x P N and y P M � L8pSUqp2qq, we see that it is
sufficient to prove that for p P N0, we have

ξ�r,s,pp�1q�,t
�
?

2q�
1
2
ppp�1q p�q2; q2q1{28

p�q�2p�2; q2q1{2p pq2p�2; q2q1{28

ΓN pGp�q0,0 qξ�r,s,p,t, (2)

and that for p P N, we have

ξ�r,s,p�p�1q�,t�p
�
?

2
p	q2p�2; q2q1{28 pq4; q4q1{2p

pq2; q2q1{28

ΓN pGp�q0,p qξ�r,s,0,t. (3)

From Lemma 1.9, it follows that

ΓN pGp�qr,s q �
¸
�

¸
jPN

Gp�qr,j b Gp�qj,s

and
ΓN pGp�qr,s q �

¸
�

¸
jPN

Gp	qr,j b Gp�qj,s

as σ-weakly converging sums.
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We will in the following use the alternative expression (1) for the function P�
q2

which appears in
Proposition 0.4. Then using the formulas from Proposition 2.6, we get from the formulas in the
previous paragraph, after some easy simplifications,

ΓN pGp�q0,0 qξ�r,s,p,t �
1

2

¸
�

¸
v,wPI�
v�w�t

¸
jPZ
p�1qpp�1qvp	qqjqvw�ppv�w�1qq

1
2
vpv�1qq

1
2
wpw�1q

� pq
2v�2; q2q8pq2p�2; q2q1{28 p	q2j�2v�2; q2q1{2v p	q2j�2w�2; q2q1{2w p�q2j�2; q2q8

pq2; q2qwpq4; q4q8
� 3ϕ2

�
q�2w q�2v q�2p

0 0
| q2, q2



e
p�q
v�j�1 b er�p�w�j b e

p�q
w�j�1 b es�v�p�j ,

where we recall that by convention ea � 0 when a R I�. Now we apply the change of variables
j � w �m. Changing then the order of summation, we get, using still the notation J p�q � Z and
J p�q � N,

ΓN pGp�q0,0 qξ�r,s,p,t �
1

2
p�1qpq 1

2
p2tp�2p�t2�tq pq2p�2; q2q1{28

pq4; q4q8
¸
�

p�1qt
¸

m,nPJp�q

m�n�t

p	qqm
¸

v,w¥0
v�w�t

p�1qwqwp2v�2pq

� pq
2v�2; q2q8p	q2n�2; q2q1{2v p	q2m�2; q2q1{2w p�q2m�2w�2; q2q8

pq2; q2qw
� 3ϕ2

�
q�2w q�2v q�2p

0 0
| q2, q2



e
p�q
�n�1 b er�p�m b e

p�q
�m�1 b es�n�p.

Now with the conditions on m,n, v, w as in this summation, we can write

p	q2n�2; q2q1{2v p	q2m�2; q2q1{2w � p	q2n�2; q2q1{28

p	q2m�2; q2q1{28

p	q2m�2; q2qw.

Then we can apply the summation formula in Proposition C.1 with x � �q2m and y � �q2n to obtain

ΓN pGp�q0,0 qξ�r,s,p,t �
1

2
p�1qpq 1

2
p2tp�2p�t2�tq p�1; q2qppq2p�2; q2q1{28

pq4; q4q8
¸
�

p�1qt
¸

m,nPJp�q

m�n�t

p	qqm

� p	q
2n�2; q2q1{28

p	q2m�2; q2q1{28

Ψ

� 	q�2n

q2t�2 | q2,�q2m�2p�2



e
p�q
�n�1 b er�p�m b e

p�q
�m�1 b es�n�p.

Plugging this into the right hand side of equality (2), a straightforward comparison of coefficients
proves the validity of the identity (2).

The other case p3q is entirely similar. We first write P�
q2

again in the 3ϕ2-form as in the previous case,

as this then simplifies immediately inside the expression for ξ�r,s,0,t. Next, for µ P t�,�u, write the

expansion for ΓN pGpµq0,p q as

ΓN pGpµq0,p q �
¸
�

¸
jPN

Gp�µq0,j b Gp�qj,p ,
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and, when evaluating it on ξ�r,s,0,t, use the formula in Proposition 2.6 for the factor Gp�µq0,j , and the

slightly different expression given in the remark below that Proposition for the factor Gp�qj,p . We find

ΓN pGpµq0,p qξ�r,s,0,t �
1

2

1

pq4; q4q8pq2; q2q1{28 pq4; q4q1{2p
¸
�

¸
v,wPI�

v�w�t

¸
i,jPZ
i�j�p

p�µqvp	1qjqvw� 1
2
vpv�1q� 1

2
wpw�1q�j

p	q2i�2w�2; q2q1{28 p	µq2j�2v�2; q2q1{28 pq2v�2; q2q8pq2w�2; q2q8p�µq2j�2; q2q8
p	q2i�2; q2q8

3ϕ2

�
q�2w �q�2j q�2p

	q�2i 0
| q2, q2



e
p�µq
v�j�1 b er�w�j b e

p�q
w�i�1 b es�v�j�p.

If we then apply the change of variables j � v�m and i � w�n and change the order of summation,
we obtain

ΓN pGpµq0,p qξ�r,s,0,t �
1

2

p�µqtq 1
2
tpt�1q

pq4; q4q8pq2; q2q8pq4; q4q1{2p
¸
�

¸
m,nPJp�q

m�n��t�p

p	qqmp	µq2m�2,	q2n�2; q2q1{28

8̧

w�0

p�µqwq2w2
qp2n�2m�2pqw p�µq2n�2p�2w�2, q2n�2m�2p�2w�2, q2w�2; q2q8

p	q2n�2w�2; q2q8

3ϕ2

�
q�2w �q�2n�2p�2w q�2p

	q�2n�2w 0
| q2, q2



e
p�µq
�m�1 b er�n�p b e

p�q
�n�1 b es�m�p.

Using then the summation formula in Proposition C.2 with x � �q2n�2p and y � �q2m (and with the

� in that Proposition replaced by µ), and plugging this expression for ΓN pGpµq0,p qξ�r,s,0,t into the right
hand side of the identity (3), we can again conclude that both sides are equal.

4 The linking weak von Neumann bialgebra between

SUqp2q and rEqp2q

The main part of this section consists in showing that, in Theorem 0.9, the ∆µν with µ, ν P t�, 0u are
coassociative. This will then let us conclude the proof of that Theorem in a straightforward manner.

For the t0,�u-part of pQ,∆Qq, we do not have to go through as much trouble as for the�SU qp1, 1q-case,
as we have already treated a lot of material concerning it in [2]. Let us state one of the main results
from that paper (see Theorem 3.13 and Theorem 4.4). We will use notations as in the introduction.
Also recall that the operator L0� we will use was defined in Definition 2.7.

Proposition 4.1. There exists a unital, normal, coassociative �-homomorphism

Γ :

�
L p0, 0q L p0,�q
L p�, 0q L p�,�q



Ñ
�

L p0, 0qb̄L p0, 0q L p0,�qb̄L p0,�q
L p�, 0qb̄L p�, 0q L p�,�qb̄L p�,�q



which restricts to maps

Γµν : L pµ, νq Ñ L pµ, νqb̄L pµ, νq,

22



and such that Γ00 � ∆L8p rEqp2qq
, Γ�� � ∆L8pSUqp2qq and

∆0�pL0�q �
8̧

k�0

pq2; q2q�1
k vk0L0�b

k
� b vk0L0�p�qb��qk,

this last sum being convergent in norm.

The coassociativity of the ∆µν will then follow immediately from the following Proposition.

Proposition 4.2. For all µ, ν P t0,�u, we have ∆µν � Γµν .

Proof. We first remark that we have not substantiated yet the claim that ∆0, in the form represented
in Proposition 0.6, equals the comultiplication in Definition 0.5, which we will momentarily write as
∆L8p rEqp2qq

for distinction. This equality will be proven in the course of the proof.

We observe that the Proposition will follow once we prove that ∆0pa0q � Γ00pa0q and ∆0�pL0�q �
Γ0�pL0�q. Indeed, suppose this is satisfied. Then as the equality

p∆L8pSUqp2qq �q∆� � Γ�

was part of the previous Proposition, we will have that, for x P L8pSUqp2qq and m P Z,

∆0�pam0 L0�xq � ∆0pa0qm∆0�pL0�q∆�pxq
� Γ0pa0qmΓ0�pL0�qΓ�pxq
� Γ0�pam0 L0�xq.

But the elements of the form am0 L0�x are easily seen to be σ-weakly dense in L p0,�q. So then
∆0� � Γ0� follows from this. As in the beginning of Proposition 3.2, this will allow us to conclude
∆µν � Γµν for all µ, ν P t0,�u.

We now first show that ∆0pa0q � a0 b a0. By the definition of ∆0 as given in Proposition 0.6, this
means that, for r, s, t P Z and p P I0 � Z, we should have

ξ0r,s,p�1,t �
¸

v,wPI0
v�w�t

P 0
q2pp, v, wqev�1 b er�p�w b ew�1 b es�p�v.

Comparing coefficients, this reduces to the identity

P 0
q2pp� 1, v � 1, w � 1q � P 0

q2pp, v, wq

for all p, v, w P I0. This is in fact immediate from the definition of P 0
q2 , as the formula only involves

pairwise differences of the v, w and p.

Thus the only point left to prove is that ∆0�pL0�q � Γ0�pL0�q. Choose a vector ξ�r,s,p,t with r, s, t P Z
and p P I� � N. It is then sufficient to prove that ∆0�pL0�qξ�r,s,p,t � Γ0�pL0�qξ�r,s,p,t. Using the
definition of ∆0�, and the formulas for L0� and Γ0�pL0�q stated in the previous Proposition, this
becomes the identity

pq2p�2; q2q1{28 ξ0r,s,p,t �
¸

v,wPI�
v�w�t

8̧

k�0

P�
q2
pp, v, wqp�qqkqkpv�wq pq

2v�2, q2w�2; q2q1{28

pq2; q2qk

�ev�k b er�p�w�k b ew�k b es�p�v�k.
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Multiplying both sides with p�qq�ppq2; q2q8pq2p�2; q2q�1{2
8 , and using the definition of P 0

q2 (see Propo-

sition 0.6) and the expression (1) for the function P�
q2

(see Proposition 0.4), this becomes

¸
v,wPI0
v�w�t

p�qq�wqpp�wqpv�wqΨ
�

0
q2v�2w�2 | q2, q2p�2w�2



ev b er�p�w b ew b es�p�v

�
¸

v,wPI�
v�w�t

8̧

k�0

p�qqkqvw�pp�kqpv�wq pq
2v�2, q2w�2, q2k�2; q2q8

pq2; q2q8 3ϕ2

�
q�2w q�2v q�2p

0 0
| q2, q2



ev�k b er�p�w�k b ew�k b es�p�v�k.

But the coefficients on the right hand side make sense for all v, w P I0, and are moreover � 0 when v
or w is not in I�. We may hence take the summation on the right over I0, and then a comparison of
coefficients shows that we must prove the following summation formula: for all v, w P Z and p P N,

p�qq�wqpp�wqpv�wqΨ
�

0
q2v�2w�2 | q2, q2p�2w�2



�

8̧

k��8

p�qqkqpv�kqpw�kq�pp�kqpv�w�kq pq
2v�2k�2, q2w�2k�2, q2k�2; q2q8

pq2; q2q8

� 3ϕ2

�
q�2w�2k q�2v�2k q�2p

0 0
| q2, q2



.

But, with t � v � w, the right hand side can be rewritten as

8̧

k�0

p�qqk�wq3k2�2pt�p�wqk�pp�wqt pq2k�2w�2, q2t�2k�2; q2q8
pq2; q2qk 3ϕ2

�
q�2k q�2t�2k q�2p

0 0
| q2, q2



,

and the identity then follows by applying Proposition C.3 with respect to x � q�2w and y � q2t. This
finishes the proof.

Combining this result with the work of the previous section, it is now an easy task to finish the proof
of Theorem 0.9.

Proof (of Theorem 0.9). Using the notation introduced before the Theorem, we have shown in the
previous sections that all maps ∆µν are coassociative, except for those with µ � ν inside t�, 0u. But
take x P L p0,�q and y P L p�,�q. Then from the definition of the ∆µν , it follows immediately that
∆0�pxyq � ∆0�pxq∆��pyq, and hence

p∆0� b ιq∆0�pxyq � p∆0� b ιq∆0�pxqp∆�0 b ιq∆�0pyq
� pιb∆0�q∆0�pxqpιb∆��q∆��pyq
� pιb∆0�q∆0�pxyq,

where the second identity follows from the results of the previous sections. As the set

L p0,�q �L p�,�q � L p0,�q

is σ-weakly dense in L p0,�q, we have proven that ∆0� is coassociative. The coassociativity of ∆�0

then follows immediately by applying the �-operation. This concludes the proof.
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Remark: One can also prove an analogue of Theorem 0.9 if we replace SUqp2q, rEqp2q and�SU qp1, 1q by

the respective Z2-quotients SOqp3q, Eqp2q and �SU qp1, 1q{Z2 � Oqp1, 2q (although this final quantum
group may require a different interpretation, see the remark after Definition 0.8). The reason is that
the actions of SUqp2q on the Podleś spheres descend to SOqp3q, so that one may equally well apply
our theory of projective corepresentations to SOqp3q with respect to the standard Podleś sphere and
the quantum projective plane, as to obtain in this way a 3�3-linking weak von Neumann bialgebra
between the mentioned quantum groups. In fact, the only reason why we have worked with their
double covers is that these have received more attention in the literature, so that it was easier for us
to refer to the known results concerning these quantum groups.

A On the tensor product representations of L 8pSUqp2qq,

L 8p rEqp2qq and L 8p�SU qp1, 1qq

Let us comment on the proof of Proposition 0.4, Proposition 0.5, and the equivalence of the Definition
0.8 with the one in [11]. We will use the same notations as in the introduction.

For the case of SUqp2q, there are several references to give. In [12], the spectral decomposition of the

operator ∆�pb��b�q was found. This was given in terms of a basis rF�
r,s,p,t of l2pZqbl2pZqbH�. (The r-s-

variables were not present in that description, as one worked with a different, irreducible representation
of the polynomial function algebra of SUqp2q. But the insertion of the extra r-s-variables is entirely
straightforward, and simply a question of doing some small bookkeeping on shifts.) However, for the
action on the p-t-part to be exactly the same as the original representation of L8pSUqp2qq on H�,

one should add some minus-signs: the correct basis then becomes F�
r,s,p,t � p�1qp rF�

r,s,p,t. That the
associated unitary Fr,s,p,t Ñ er b es b ep b et then implements the comultiplication on L8pSUqp2qq
was presented in detail in [7] (we would like to thank W. Groenevelt for providing this manuscript).
Now the concrete formula for the F�

r,s,p,t is

F�
r,s,p,t �

¸
wPN

p�1qpPwpq2p; q2t | q2qew�t b er�p�w b ew b es�p�t�w,

where Pw is the normalized Wall polynomial :

Pwpq2p; q2t | q2q � p�1qwqpp�wqpt�1q pq2t�2, q2p�2; q2q1{28 pq2t�2; q2qw
pq2; q2q1{28 pq2; q2q1{2w

pwpq2p; q2t, 0 | q2q,

with pwpq2p; q2t, 0 | q2q � 2ϕ1

�
q�2w 0
q2t�2 | q2, q2p�2



the ordinary Wall polynomial (of degree w in

the variable q2p with parameter q2t). One then uses a limit version of the identity III.(3) of [6] to
arrive at the expression we used in Proposition 0.4 (this was also observed in the remarks following
Proposition 3.3 of [11]). On the other hand, using the transformation which appears at the end of
section 2 of [12], we get the expression (1) for the functions P�

q2
appearing in Proposition 0.4.

We remark that an implementing unitary for ∆� (in fact, a concrete description of the regular left
corerepresentation of SUqp2q) was also obtained in [15].

Proposition 0.6 was proven in the course of Proposition 4.2. However, we should remark that in [10],
a spectral decomposition of the operator ∆0pb�0b0q was obtained. This gives an eigenvector-basis that,
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as with r12s in the previous paragraph, is almost the same basis as the one we obtain, but modulo
the appearance of some extra minus sign. We should also note that

P 0
q2pp; v;wq � p�qqp�wJv�wpqp�w; q2q,

where Jαpz; q2q is the 1ϕ1-q-Bessel function

Jαpz; q2q � zα
1

pq2; q2q8Ψ

�
0

q2α�2 | q2, q2z2


.

Finally, we must comment on the definition of �SU qp1, 1q we presented. The equivalence with the one
in [11] is again straightforward, though there is now an extra element which should be observed.

We first introduce a certain operator Ω P L8p�SU qp1, 1qqb̄L8p�SU qp1, 1qq. As e is a self-adjoint

unitary inside L8p�SU qp1, 1qq, we may identify W �peq with CpZ2q, sending e to the identity function.
As e is group-like, this will moreover intertwine ∆� with the natural comultiplication on CpZ2q coming
from the group structure on Z2. Denote then by ω P CpZ2q b CpZ2q the 2-cocycle function

ω : Z2 � Z2 Ñ S1 :

"
ωpµ, νq � 1 if µ and ν not both �
ωpµ, νq � �1 if µ � ν � �,

and denote by Ω its image in L8p�SU qp1, 1qqb̄L8p�SU qp1, 1qq, using the above identification. More
explicitly, we have that Ω is given on H� bH� as the operator

Ω ev b er b ew b es � ωpcpvq, cpwqqev b er b ew b es.

The 2-cocycle property of ω will give the following identity for Ω:

pΩ� b 1qp∆� b ιqpΩ�q � p1b Ω�qpιb∆�qpΩ�q,
i.e. Ω is a unitary 2-cocycle ([5]) for ∆�. This implies that pL8p�SU qp1, 1q,Ω∆�p � qΩ�q is again a
well-defined von Neumann bi-algebra.

Let us now turn to the definition of �SU qp1, 1q presented in [11]. We first remark that in [11], one
identifies our set I� with a subset of R by the correspondence p� Ø �q�p. Denote then by Fr,s,m,�q�p

the basis elements introduced in Definition 3.6 of [11]. One computes, using Result 6.4 and Proposition
6.6 of [11], that the following relation holds between the vector bases F and ξ�:

Fr,s,m,�q�p � Ωξ�r,s,p,m.

This implies that, if we denote by r∆� the comultiplication as introduced in [11] by means of the
vector basis F , we have the following relation:r∆�pxq � Ω∆�pxqΩ�, for all x P L8p�SU qp1, 1qq.
But in fact, pL8p�SU qp1, 1qq,Ω∆�p � qΩ�q is just an isomorphic copy of pL8p�SU qp1, 1q,∆�p � qq. To
see this, we remark that, as we have taken ω as an S1-valued 2-cocycle on Z2, it is a coboundary: we
have ωpµ, νq � fpµνq

fpµqfpνq with fp�q � 1 and fp�q � i. Denote then

u : H� Ñ H� : ep b er Ñ fpcppqq ep b er,

and denote
φ : L8p�SU qp1, 1qq Ñ L8p�SU qp1, 1qq : xÑ uxu�.

Then one gets that Ω � pu� b u�q∆�puq, and so

∆�pφpxqq � pφb φqpΩ∆�pxqΩ�q, for all x P L8p�SU qp1, 1qq.
This thus proves that pL8p�SU qp1, 1qq,∆�q and pL8p�SU qp1, 1qq, r∆�q are isomorphic von Neumann
bialgebras, and justifies our use of the basis ξ�.
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B Spectral decomposition of rα�pW q

In this appendix, we will determine the spectral decomposition of the action of SUqp2q on the equato-
rial Podleś sphere and on the quantum projective plane. We are not aware of this concrete computation
having been carried out explicitly in the literature, but the method is quite standard (and could prob-
ably be shortened somewhat).

We will use the notation as introduced in section 2.2.

Proposition B.1. The eigenspace of the eigenvalue �1 of rα�pW q has a basis of orthonormal vectors

ξ
pt,pq
0,� , where t P Z and p P J p�q, these vectors being given by the formula

ξ
pt,pq
0,� �

8̧

n�0

p�1qnq npn�1q
2

p	q2p�2; q2q1{2n p�q2p�2n�2; q2q1{28

p�1; q2q1{28 pq2; q2q1{2n
en b et�n b ep�n.

Proof. Denote, for t, p P Z,

K t,p � xten b em b ek | m� n � t, k � n � puy � l2pNq b l2pZq b l2pNq,

where xSy denotes the linear span of a set S. Then, since for n, k P N and m P Z, we have, by the
definition of rα�pW q in Definition 2.2,

rα�pW qpen b em b ekq � qnp1� q2n�2q1{2p1� q4k�4q1{2en�1 b em�1 b ek�1

�p1� p1� q2qq2nqq2ken b em b ek

�qn�1p1� q2nq1{2p1� q4kq1{2en�1 b em�1 b ek�1,

we see that rα�pW q restricts to each K t,p, and determines there a Jacobi matrix.

We make a distinction in the analysis between the case p ¥ 0 and p   0.

First we consider the case p ¥ 0. Then we have a unitary map l2pNq Ñ K t,p such that en Ñ
enb et�nb ep�n. Under this identification, the restriction of rα�pW q becomes the Jacobi matrix W ppq

with

W ppqen � qnp1� q2n�2q1{2p1� q4pp�nq�4q1{2en�1

�p1� p1� q2qq2nqq2pp�nqen
�qn�1p1� q2nq1{2p1� q4pp�nqq1{2en�1.

Each eigenvalue then arises with multiplicity one, and an eigenvector at eigenvalue x is given by

η
ppq
x � ° f

ppq
n pxqen, where f

ppq
n is the sequence of functions satisfying f

ppq
�1 � 0, f

ppq
0 � 1 and

qnp1� q2n�2q1{2p1� q4p�4n�4q1{2f ppqn�1pxq � p1� p1� q2qq2nqq2p�2nf ppqn pxq

�qn�1p1� q2nq1{2p1� q4p�4nq1{2f ppqn�1pxq � xf ppqn pxq.
Denote

f ppqn pxq � p�1qnq�n2

2
� 4p�3

2
n

pq4; q4q1{2p�n
pq4; q4q1{2p pq2; q2q1{2n

P ppq
n p�q2p�2xq,

for some other function P
ppq
n . Then P

ppq
n should itself satisfy the recurrence relation

p1� q4pp�n�1qqP ppq
n�1pxq � pp1� p1� q2qq2nqq2n�4p�2 � 1qP ppq

n pxq
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�q2n�4p�2p1� q2nqP ppq
n�1pxq � px� 1qP ppq

n pxq.
Hence, for example by [9], section 3.11, we see that P

ppq
n pxq � Pnpx; q2p,�q2p; q2q, where Pnpx; a, b; qq

denotes the big q-Laguerre polynomial

Pnpx; a, b; qq � 3ϕ2

�
q�n 0 x

qa qb
| q, q



.

So

f ppqn pxq � p�1qnq�n2

2
� 4p�3

2
n

pq4; q4q1{2p�n
pq4; q4q1{2p pq2; q2q1{2n

3ϕ2

�
q�2n 0 �q2p�2x

q2p�2 �q2p�2 | q2, q2


.

Now we know that the eigenspace H�1 for the eigenvalue �1 of rα�pW q will be spanned by the
H�1 XK t,p. We now show that each W ppq has eigenvalues 1 and �1.

We first remark that

3ϕ2

�
q�2n 0 	q2p�2

q2p�2 �q2p�2 | q2, q2


� 2ϕ1

�
q�2n 0
�q2p�2 | q2, q2



.

Then, using a limit form of the q-Vandermonde formula ([6], Equation 1.5.3), we get

2ϕ1

�
q�2n 0
�q2p�2 | q2, q2



� p	1qnqnpn�1q q2pp�1qn

p�q2p�2; q2qn .

Hence, using the formula pa2; q2qn � pa; qqnp�a; qqn, we get

f ppqn p�1q � p�1qnq npn�1q
2

p	q2; q2q1{2p�n
pq2; q2q1{2n p	q2; q2q1{2p p�q2p�2; q2q1{2n

� p�1qnq npn�1q
2

p	q2p�2; q2q1{2n
pq2; q2q1{2n p�q2p�2; q2q1{2n

.

So, by using a limit form of Heine’s summation formula ([6], Equation II.5),

8̧

n�0

|f ppqn p�1q|2 � 1ϕ1

� 	q2p�2

�q2p�2 | q2,�1



� p�1; q2q8

p�q2p�2; q2q8 .

Hence �1 appears as an eigenvalue of W ppq with eigenvector η
ppq
�1 P K t,p. We then find that the inter-

section of the eigenspace H�1 with the closed linear span of the K t,p with p ¥ 0 has an orthonormal
basis consisting of the vectors

ξ
pt,pq
0,� �

8̧

n�0

p�1qnq npn�1q
2

p	q2p�2; q2q1{2n p�q2p�2n�2; q2q1{28

p�1; q2q1{28 pq2; q2q1{2n
en b et�n b ep�n.

We move on to the case p   0. Now we have a unitary map l2pNq Ñ K t,p such that ek corresponds
to ek�p b et�k�p b ek. Under this identification, the restriction of rα�pW q becomes the Jacobi matrix
W ppq with

W ppqek � qk�pp1� q2k�2p�2q1{2p1� q4k�4q1{2ek�1

�p1� p1� q2qq2pk�pqqq2kek
�qk�p�1p1� q2k�2pq1{2p1� q4kq1{2ek�1.

28



Again, each eigenvalue arises with multiplicity one, and an eigenvector at eigenvalue x is given by

η
ppq
x � ° f

ppq
k pxqek, where now f

ppq
k is the sequence of functions satisfying f

ppq
�1 � 0, f

ppq
0 � 1 and

qk�pp1� q2k�2p�2q1{2p1� q4k�4q1{2f ppqk�1pxq � p1� p1� q2qq2pk�pqqq2kf ppqk pxq

�qk�p�1p1� q2k�2pq1{2p1� q4kq1{2f ppqk�1pxq � xf
ppq
k pxq.

Now put

f
ppq
k pxq � p�1qkq� k2

2
� p�2p�3qk

2
pq�2p�2; q2q1{2k p�q2; q2q1{2k

pq2; q2q1{2k
P
ppq
k p�q2xq,

for some function P
ppq
k . This P

ppq
k should then satisfy the recursion formula

p1� q2k�2p�2qp1� q2k�2qP ppq
k�1pxq � pp1� p1� q2qq2k�2pqq2k�2 � 1qP ppq

k pxq

�q2k�2p�2p1� q2kqP ppq
k�1pxq � px� 1qP ppq

k pxq.
So P

ppq
k is again a big q-Laguerre polynomial, namely P

ppq
k pxq � Pkpx; q�2p,�1; q2q. We then have

f
ppq
k pxq � p�1qkq� k2

2
� p�2p�3qk

2
pq�2p�2; q2q1{2k p�q2; q2q1{2k

pq2; q2q1{2k
3ϕ2

�
q�2k 0 �q2x

q�2p�2 �q2 | q2, q2


.

We now show that W ppq has 1 in its spectrum, but not �1.

We first show that 1 is in the spectrum. Using again the q-Vandermonde formula, we have

3ϕ2

�
q�2k 0 �q2

q�2p�2 �q2 | q2, q2



� 2ϕ1

�
q�2k 0
q�2p�2 | q2, q2



� p�1qkqkpk�1q q�2pk�2k

pq�2p�2; q2qk .

Then

f
ppq
k p1q � q

kpk�1q
2 q�pk

p�q2; q2q1{2k
pq2; q2q1{2k pq�2p�2; q2q1{2k

.

So, using again the limit form of Heines summation formula, we get

8̧

k�0

|f ppqk p1q|2 � 1ϕ1

� �q2
q�2p�2 | q2,�q�2p



� p�q�2p; q2q8

pq�2p�2; q2q8 .

Hence the formal sum η
ppq
1 gives in fact a well-defined element inside K t,p, and we find that the

intersection of the eigenspace H1 with the closed linear span of the K t,p with p   0 has an orthonormal
basis consisting of the vectors

ξ
pt,pq
0,� �

8̧

k�0

q
kpk�1q

2 q�pk
p�q2; q2q1{2k pq2k�2p�2; q2q1{28

p�q�2p; q2q1{28 pq2; q2q1{2k
ek�p b et�k�p b ek.

Now for n ¥ �p, we have

p�q2; q2q1{2n�ppq2n�2; q2q1{28

p�q�2p; q2q1{28 pq2; q2q1{2n�p
� p�q2; q2q1{28

p�q2n�2p�2; q2q1{28 p�q�2p; q2q1{28

� pq
2n�2p�2; q2q1{28

pq2; q2q1{2n
,
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and
p�q2; q2q1{28

p�q2n�2p�2; q2q1{28 p�q�2p; q2q1{28

� q
p�pqp�p�1q

2
p�q2p�2; q2q1{2n
p�1; q2q1{28

.

Hence we can also write

ξ
pt,pq
0,� �

8̧

n�0

q
npn�1q

2
p�q2p�2; q2q1{2n pq2p�2n�2; q2q1{28

p�1; q2q1{28 pq2; q2q1{2n
en b et�n b ep�n,

which is precisely the same formula as for the p ¥ 0 case. Indeed, we could also have checked directly
that this is also an eigenvector of norm 1 for the eigenvalue 1.

Now we show that W ppq has no eigenvector for �1 when p   0. First remark that, using the transfor-
mation formulas (III.5) and (III.1) of [6], we can rewrite, for �p ¡ 0,

3ϕ2

�
q�2k 0 q2

q�2p�2 �q2 | q2, q2



� p�q�2k; q2q�1
k 2ϕ1

�
q�2k q�2p

q�2p�2 | q2,�q2



� pq�2p; q2q8p�q�2k�2; q2q8
p�q�2k; q2qkpq�2p�2; q2q8p�q2; q2q8 2ϕ1

�
q2 �q2
�q�2k�2 | q2, q�2p



.

But clearly

1 ¤ 2ϕ1

�
q2 �q2
�q�2k�2 | q2, q�2p



¤ 2ϕ1

�
q2 �q2
�q2 | q2, q�2p



for all �p ¡ 0. So to see if

°8
k�0 |f ppqk p�1q|2 � �8, we have to check if

8̧

k�0

q�k
2�p�2p�3qk pq�2p�2; q2qkp�q2; q2qkp�q�2k�2; q2q28

pq2; q2qkp�q�2k; q2q2k
� �8.

Leaving out more non-essential factors regarding the convergence, the sum simplifies to

8̧

k�0

q�k
2�p�2p�3qkp1� q�2kq�2,

which is clearly divergent.

It is now not so hard to find the complete spectrum of rα�pW q by using the operators rα�pY q and its
adjoint, as given in Definition 2.2.

Proof (of Proposition 2.4). The fact that rα�pW q will have its spectrum inside t�q2n, 0 | n P Nu, with
0 not in the point-spectrum, is immediate.

Using the same notation as in the previous proposition, denote, for r P N and t, p P Z, by K t,p
r,� the

eigenspace of the eigenvector �q2r inside K t,p (which could be zero-dimensional). Then for r ¡ 0,
we have, by using the commutation relations between W,Y and Y �,

rα�pY qK t,p
r,� � K t�2,p�1

r�1,� ,

rα�pY q�K t,p
r,� � K t�2,p�1

r�1,� .
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Denote, for r P N and t, p P Z, by η
pt,pq
r,� the formal eigenvectors which we denoted as η

ppq
�q2r

P K t,p

in the previous Proposition. Then by combining the above remark concerning rα�pY q and its ad-
joint with the previous Proposition, we see that in the �-case, all values of p and r correspond to
actual eigenvectors, while in the �-case, we have the restriction r � p ¥ 0. Moreover, the linear span

of the η
pt,pq
r,� , where r,�, t and p range over all admissible values, will then be a dense subspace of

l2pNq b l2pZq b l2pNq.

Now we have, by comparing leading coefficients in the standard basis decomposition, for p ¡ 0 that

rα�pY �qηpt,pqr,� � �qp1� q4pq1{2 ηpt�2,p�1q
r�1,� , (4)

while for p ¤ 0, we have

rα�pY �qηpt,pqr,� � � p1� q2r�2q
p1� q�2p�2q1{2 q

�p�1 η
pt�2,p�1q
r�1,� . (5)

Since Y Y � � 1� q4W 2 by an easy computation, we then have, taking norms of both sides, that, for
p ¡ 0,

p1� q4r�4q}ηpt,pqr,� }2 � q2p1� q4pq}ηpt�2,p�1q
r�1,� }2,

and for p ¤ 0,

p1� q4r�4q}ηpt,pqr,� }2 � p1� q2r�2q2
p1� q�2p�2qq

�2p�2 }ηpt�2,p�1q
r�1,� }2.

By induction, we then find the following formulas for the norm squared of the η-vectors: if p ¥ 0, we
have

}ηpt,pqr,� }2 � q�2r pq4; q4qrp�1; q2q8
pq4p�4; q4qrp�q2p�2r�2; q2q8 ,

if r � p ¥ 0 ¡ p, we have

}ηpt,pqr,� }2 � q�p
2�p�2r pq2; q2q�pp	q2r�2; q2q8p�1; q2q8

p�q2r�2; q2q8p	q2r�2p�2; q2q8 ,

and for 0 ¡ r � p ¡ 0 we have

}ηpt,pqr,� }2 � qr
2�r�2rp pq2; q2qrpq2; q2q�pp�q�2r�2p; q2q8

p�q2; q2qrpq2; q2q�p�rpq�2r�2p�2; q2q8 .

Denote by ξ
pt,pq
r,� � p	1qr

}η
pt,pq
r,� }

η
pt,pq
r,� the normalized eigenvectors for rα�pW q (the reason for the extra sign

factor p	1qr is that Proposition 2.5 would hold). Then, from the expressions for η
pt,pq
r,� in the previous

Proposition, together with the above formulas for the norm, we have concrete expressions for the ξ
pt,pq
r,�

in terms of 3ϕ2-functions. We next want to write these in a different form.

Using, for p ¥ 0, the transformation formula

3ϕ2

�
q�2n 0 	q2p�2r�2

�q2p�2 	q2p�2 | q2, q2



� p�1qn p	q2p�2r�2; q2qn
p	q�2p�2n; q2qnp�q2p�2; q2qn

� 3ϕ2

�
q�2n q�2r �q�2p�2n

	q�2p�2n�2r 0
| q2, q2



,

which is a combination of the identities (III.5) and (III.6) of [6], we find, after some simplifications,

that the ξ
pt,pq
r,� for p ¥ 0 satisfy the formula in the statement of the Proposition.
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In case p   0, we can use the same identities to get, for k � n� p ¥ 0, the transformation formula

3ϕ2

�
q�2k 0 	q2r�2

q�2p�2 �q2 | q2, q2



� p�1qk�pp�q�2pqk p	q2r�2; q2qk
p�q�2k; q2qkpq�2p�2; q2qk

� 3ϕ2

�
q�2k�2p q�2r �q�2k

	q�2k�2r 0
| q2, q2



,

from which, again after some simplifications, we see that the formula for ξ
pt,pq
r,� in the Proposition

is still valid in this case (where we note again that, in the case of negative eigenvalues, the r, p are
restricted by the condition r � p ¥ 0).

C Some summation formulas for basic hypergeometric

functions

Proposition C.1. Suppose x, y P C0 and p P N. For w P N, write

gppqw px, yq � p�1qwq2w2�2pwpx
y
qw
pq2w�2 x

y ; q2q8pxq2w�2; q2q8p�q2x; q2qw
pq2; q2qw .

Then

8̧

w�0

gppqw px, yq 3ϕ2

�
q�2w q�2w y

x q�2p

0 0
| q2, q2



� p�1; q2qpΨ

�
� 1
y

q2 xy
| q2, q2p�2x

�
.

Proof. As the 3ϕ2-term is a polynomial of fixed degree p, it is easy to see that the double sum on
the left hand side is absolutely convergent, so that we can change the order of summation later on.
Moreover, both sides are analytic in each variable x and y, so we can also restrict our attention to
the situation x, y R �q2Z.

Then the identity can be rewritten in the form

8̧

w�0

p�1qwq2w2�2pwpx
y
qw p�q2x; q2qw
pq2x; q2qwpq2 xy ; q2qwpq2; q2qw 3ϕ2

�
q�2w q2w yx q�2p

0 0
| q2, q2




� p�1; q2qp
pq2 xy ; q2q8pq2x; q2q8Ψ

�
� 1
y

q2 xy
| q2, q2p�2x

�
.

Now on the left hand side, we can expand the 3ϕ2-term as a sum ranging from 0 to w. Changing the
order of summation, we can write the entire expression as a double sum over l : 0 Ñ8 and w : lÑ8.
Then changing the variable w to w � l, and reversing the order of summation again, the above left
hand side expression can be simplified to

8̧

w�0

p�1qwq2w2�2pwpx
y
qw p�q2x; q2qw
pq2 xy ; q2qwpq2x; q2qwpq2; q2qw

8̧

l�0

p�1qlq2lp pq
�2p; q2qlp�q2w�2x; q2ql
pq2w�2x; q2qlpq2; q2ql .

Now the sum over l is just 2ϕ1

�
q�2p �q2w�2x

q2w�2x
| q2,�q2p



. By the q-Vandermonde formula ([6],

(1.5.2)), this equals
p�1;q2qp

pq2w�2x;q2qp
. So our left hand side expression becomes

p�1; q2qp
pq2x; q2qp

8̧

w�0

p�1qwq2w2�2pwpx
y
qw p�q2x; q2qw
pq2 xy ; q2qwpxq2p�2; q2qwpq2; q2qw . (6)
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Now the sum over w can be written as

lim
cÑ0

2ϕ2

� �q2x c�1

q2p�2x q2 xy
| q2,�cq2p�2x

y



.

Using (III.4) of [6], this becomes

p� 1
y ; q2q8

pq2 xy ; q2q8 2ϕ1

� �q2x 0
q2p�2x

| q2,�1

y



,

which by [6], (III.1) can be transformed into

1

pq2p�2x, q2 xy ; q2q8 Ψ

�
� 1
y

q2 xy
| q2, q2p�2x

�
.

Then plugging this back into the (6), we find the identity we were after.

Proposition C.2. Suppose p P N and x, y P C0 with x R �q�2N�2p�2. For w P N, write

gpp,�qw px, yq � p	1qwq2w2px
y
qw
pq2w�2 x

y ; q2q8p�q2w�2x; q2q8p�q2p�2x; q2qw
pq2; q2qw .

Then

8̧

w�0

gpp,�qw px, yq 3ϕ2

�
q�2w q�2w 1

x q�2p

�q�2p�2w 1
x 0

| q2, q2



� Ψ

�
	 1
y

�q2p�2 x
y

| q2,�q2x
�
.

Proof. As for the previous Proposition, both sides of the identity are analytic in x and y, so we may
restrict our attention to the case x, y R �q2Z. We will then only give the proof for the �-case, as the
�-case is completely similar.

We again expand the 3ϕ2-factor on the left hand side as a sum over the variable l : 0 Ñ w, change the
order of w and l, replace w by the variable w � l, and again change the order of summation. Then
we obtain that the expression on the left hand side can be simplified to

¸
w�0

p�1qwq2w2px
y
qw p�q2p�2x; q2qw
pq2 xy ; q2qwpq2x; q2qwpq2; q2qw

8̧

l�0

p�1qlql2�lq2lpw�pqpx
y
ql pq�2p; q2ql
pq2w�2 x

y ; q2qlpq2; q2ql .

The sum over l thus equals 1ϕ1

�
q�2p

q2w�2 x
y
| q2, q2w�2p�2 x

y



, which, by the limit form of Heines

summation formula ([6], (II.5)) can be reduced to
pq2w�2p�2 x

y
;q2q8

pq2w�2 x
y
;q2q8

. Then the sum over w can be

rewritten as

pq2p�2x

y
; q2q8 lim

cÑ0
2ϕ2

� �q2p�2x c�1

q2x q2p�2 x
y
| q2,�cq2x

y



,

which, by using again [6], (III.4) and (III.1), reduces to the right hand side of the identity we wanted
to prove.

33



Proposition C.3. Suppose x, y P C and p P N. For k P N, write

f
ppq
k � p�qqkq3k2�2kppxyqk pq

2k�2x, q2k�2y; q2q8
pq2; q2qk .

Then
8̧

k�0

f
ppq
k px, yq 3ϕ2

�
q�2k q�2k 1

y q�2p

0 0
| q2, q2



� Ψ

�
0
q2y

| q2, q2p�2x



.

Proof. Both sides of the identity again depend analytically on the variables x and y, so we may sup-
pose that x, y R t0u Y q2Z.

As in the previous Propositions, we again expand the 3ϕ2-factor on the left hand side as a sum over
the variable l : 0 Ñ k, change the order of k and l, replace k by the variable k � l, and again change
the order of summation. Then we obtain that the expression on the left hand side can be simplified
to

8̧

k�0

p�qqkq3k2�2pkpxyqk pq
2k�2x, q2k�2y; q2q8

pq2; q2qk 1ϕ1

�
q�2p

q2k�2x
| q2, q2k�2p�2x



.

But the 1ϕ1-expression can be simplified to pq2k�2p�2x;q2q8
pq2k�2x;q2q8

by the limit version of Heines summation

formula (equation (1.5.1) in [6]). The remaining sum over k can then be shown to equal precisely

Ψ

�
0
q2y

| q2, q2p�2x



by a (double) limit version of Jackson’s transformation formula (equation

(1.5.4) in [6]). This concludes the proof.
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[17] P. Podleś, Quantum spheres, Lett. Math. Phys. 14 (3) (1987), 193-202.

[18] R. Tomatsu, Compact quantum ergodic systems, J. Funct. Anal. 254 (2008), 1–83.

[19] S.L. Woronowicz, Twisted SUp2q group. An example of a non-commutative differential calculus,
Publications of RIMS, Kyoto University 23 (1) (1987), 117–181.

[20] S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613–665.

[21] S.L. Woronowicz, Quantum Ep2q-group and its Pontryagin dual, Letters on Math. Phys. 23
(1991), 251–263.

[22] S.L. Woronowicz, Unbounded elements affiliated with C�-algebras and noncompact quantum
groups, Comm. Math. Phys. 136 (1991), 399-432.

[23] S.L. Woronowicz, Quantum SUp2q and Ep2q groups. Contraction procedure, Comm. Math. Phys.
149 (1992), 637–652.

[24] S.L. Woronowicz, Compact quantum groups, in: Symétries quantiques (Les Houches, 1995),
North-Holland (1998), 845-884.

35


